

Performance of grid-connected PV

PVGIS-5 estimates of solar electricity generation:

Provided inputs: Latitude/Longitude: 59.320,24.557

Horizon: Calculated Database used: PVGIS-SARAH2 PV technology: Crystalline silicon

PV installed: 9.1 kWp System loss: 14 %

Simulation outputs

35° Slope angle: Azimuth angle: 0 °

Yearly PV energy production: 8338.53 kWh Yearly in-plane irradiation: 1155.77 kWh/m² Year-to-year variability: 459.36 kWh

Changes in output due to:

Angle of incidence: -3.06 % Spectral effects: NaN % Temperature and low irradiance: -4.9 % Total loss: -20.72 %

Outline of horizon at chosen location:

Horizon height
-- Sun height, June
--- Sun height, December

Monthly energy output from fix-angle PV system:

Monthly in-plane irradiation for fixed-angle:

Monthly PV energy and solar irradiation

•	-		
Month	E_m	H(i)_m	SD_m
January	139.3	18.2	42.4
February	339.2	43.0	111.9
March	766.5	98.9	178.2
April	1051.3	142.2	158.1
May	1272.7	179.0	167.8
June	1222.3	174.0	118.6
July	1197.0	172.2	124.0
August	1027.0	145.8	145.5
September	703.0	97.6	96.6
October	407.8	55.4	102.4
November	132.1	18.5	29.7
December	80.4	11.1	24.3

E_m: Average monthly electricity production from the defined system [kWh].

 $H(i)_m$: Average monthly sum of global irradiation per square meter received by the modules of the given system [kWh/m²].

SD_m: Standard deviation of the monthly electricity production due to year-to-year variation [kWh].

For more information, please visit https://ec.europa.eu/info/legal-notice_er

PVGIS ©European Union, 2001-2024. Reproduction is authorised, provided the source is acknowledged, save where otherwise stated